

Mark Scheme

Sample Assessment Material 2018

Pearson Edexcel International GCSE Chemistry (4CH1) Paper 1C

Pearson Edexcel International GCSE in Science Double Award (4SD0) Paper 1C

Question number				Answer	Additional Guidance	Marks		
	(a)		A (a	nihonium atom has 113 protons)		1		
	(b)	(i)	3			1		
		(ii)		eady used for nitrogen / Ni already for nickel		1		
			OR					
			own	element in the Periodic Table has its unique symbol / cannot share a ool with another element				
	(c)	(i)	M1	atoms of the same element	ACCEPT atoms with the same number of protons/atoms with the same atomic number	2		
			M2	that have different masses	ACCEPT different number of neutrons/different mass numbers			
		(ii)	B (17	73)		1		
	(d)		M1	(60.1 x 69) + (39.9 x 71)	(69 x 0.601) ÷ (71 x 0.399) OR	3		
				OR 69/9.8	69.798 with no working scores 2			
			M2	6979.8÷100 OR 69.798	69.8 with no working			
			М3	69.8	scores 3			

Total for Question 1 = 9 marks

Question number		Answer	Additional guidance	Marks
2 (a)	A (co	mpound P)		1
(b)	CH ₂			1
(c)	C (pe	ntane)		1
(d)	н	H -C	ACCEPT multiple substitution	1
(e)	Stude	ent X is justified because	ACCEPT	4
	M1	S does not have a carbon-carbon double bond	S only has carbon-carbon single bonds	
	M2	so cannot be an alkene / must be an alkane	so must be an alkane / cannot be an alkene	
	Stude	ent Y is justified because		
	М3	${f S}$ fits the general formula C_nH_{2n}	S does not fit the general formula C_nH_{2n+2}	
	M4	which is the general formula for alkenes	which is the general formula for alkanes	

Total for Question 2 = 8 marks

Question number	Answer	Additional guidance	Marks
3 (a)	$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$	ACCEPT multiples	1
(b)	Any two from: temperature mass of catalyst surface area of catalyst	IGNORE same solution of hydrogen peroxide / water	2
(c) (i)	An explanation that links the following two points		2
	M1 no gas would be producedM2 because this solution would just be water / no hydrogen peroxide present to decompose	ACCEPT the time would be infinite	
(ii)	M1 20 ÷ 26 M2 = 0.77 (cm ³ per second)	ACCEPT any	2
	, ,	number of significant figures except 1	
(iii)	M1 correct linear scale added to y-axis		2
	M2 axis labelled "Time taken to collect 20cm ³ of oxygen in s"	ACCEPT "Time in s" ACCEPT use of solidus i.e. "Time / s" ACCEPT use of seconds, sec in place of s	
(iv)	Any point drawn at 4cm ³ on the x-axis that is above the best fit line.		1
(v)	M1 32 (s)	ACCEPT value read correctly to nearest gridline	2
	wertical line from x-axis to curve at 5 cm³ OR Horizontal line from the curve to the y-axis at 32 s		

Question number		Answer	Additional guidance	Marks
(d)	М1	10cm ³ of 10 volume hydrogen peroxide would produce 100cm ³ of oxygen gas		2
	M2	which is the maximum capacity of the gas syringe		
		OR using more hydrogen peroxide would produce too much gas / push the plunger out of the gas syringe		

Total for Question 3 = 14 marks

Question number	Answer	. Additional guidance	Marks
4 (a)	M1 correct outer shel		3
	M2 correct outer shel lithium ions	ACCEPT outer shell shown with two electrons	
	M3 charges of +1 and ions	d -2 shown on	
(b) (i)	math math math math math math math math		3
	M2 calculation of amount i.e. $0.96 / 16 = 0$, <u> </u>	
	M3 ratio of Na : O is :	1 : 1, so NaO Answer must give formula, not just ratio	
(ii)	$78 \div (23 + 16) = 2$, so N	Na ₂ O ₂	1

Question number			Answer	Additional guidance	Marks
(c)	(i)	кон		REJECT symbols in wrong order	1
	(ii)	M1	amount carbon dioxide = 5 500 000 / 44 = 125 000 mol	OR Mr seen: CO ₂ = 44 and KO ₂ = 71	3
		M2	ratio 2:1, so 250 000 moles potassium superoxide	142 tonnes of KO ₂ react with 44 tonnes of CO ₂ , or ratio of 2:1 seen in calculation	
		М3	mass potassium superoxide = 250 000 x 71 = 17 750 000 = 18 million tonnes (2sf)	(5.5 ÷ 44) x 142 = 17.75 = 18 million tonnes	
		done	the calculation above can be in megamoles i.e. with no ersion to grams		
		ACCE	EPT 17.8 or 17.75 million tonnes		
			EPT answer in grams only if units been altered on the answer line		

Total for Question 4 = 11 marks

Question number	Answer	Notes	Marks
5 (a)	B (ethenol)		1
(b)	An explanation that links the following two points		2
	M1 bromine is decolorised / turns colourless	IGNORE any starting colour given	
	M2 because vinyl alcohol has a double bond/is unsaturated		
(c)	M1 single bond between the carbon atoms	(H OH)	2
	M2 continuation bonds shown		
	NOTE brackets are optional		
(d)	M1 M_r of the repeat unit = $2(12) + 4(1) + 16 = 44$		2
	M2 27 500 ÷ 44 = 625		
(e)	impure PVA would melt over a range of temperatures / would not all melt at 200°C	ACCEPT impure PVA would melt below 200°C	1
		ACCEPT any specified range of temperatures below 200°C	

Total for Question 5 = 8 marks

Question number	Answer	Notes	Marks
6 (a)	B (lilac)		1
(b)	$Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s)$		2
	M1 balanced equation		
	M2 state symbols		
(c)	M1 add hydrochloric acid	ACCEPT nitric acid	3
	M2 and barium chloride solution	ACCEPT barium nitrate	
	M3 white precipitate		
(d) (i)	x = 1, $y = 1$, $z = 2ORKAl(SO4)2 given as formula$	ACCEPT other combinations that give a neutral product e.g. x = 3, y = 1, z = 3	1
(ii)	M1 formula mass of KAl(SO ₄) ₂ = $39 + 27 + 2 \times (32 + (4 \times 16))$		3
	M2 mass water = 474 - M1 = 216		
	M3 moles water = 216 ÷ 18 = 12		
	Mark CQ on answer to (d)(i).		
	Final answer must be a whole number.		

Total for Question 6 = 10 marks

Question number		Answer	Additional guidance	Marks
7 (a)	Any v	value in the range 40 - 110 °C	Actual boiling point is 59 °C	1
(b)	М1	colour = pale yellow	ACCEPT colourless	2
	M2	state = gas		
(c) (i)	M1	bromine (molecules) gain electrons, so are reduced		2
	M2	Fe ²⁺ ions lose electrons, so are oxidised		
(ii)	M1	solution of suitable named iron(II) salt e.g. iron(II) nitrate	ACCEPT solution containing Fe ²⁺ ions	6
	M2	chlorine water added / chlorine gas bubbled into the solution of the iron(II) salt		
	мз	sodium hydroxide solution added		
	M4	if Fe ²⁺ did not react, green ppte forms		
	М5	if Fe ³⁺ does react, red-brown ppte forms		
	М6	suitable safety precaution e.g. fume cupboard for using chlorine, safety glasses for using sodium hydroxide		

Question number		Answer	Additional guidance	Marks
(d) (i)	M1 Thes	shared pair of electrons between one of the Cl atoms and the O atom e may be shown within the overlap area	M1 both shared pairs of electrons between each Cl atom and the O atom	3
	M2	3 pairs of non-bonded electrons on a Cl atom OR 2 pairs of non-bonded electrons on an O atom	M2 3 pairs of non-bonded electrons on both CI atoms	
	M3	rest of the diagram correct	M3 2 pairs of non-bonded electrons on O atom	
(ii)	M1 M2	acidic / pH less than 7 because chlorine is a non-metal	ACCEPT Cl ₂ O is the oxide of a non-metal	2

Total for Question 7 = 16 marks

Question number		Answer	Additional guidance	Marks
8 (a)	C (or	ne week)		1
(b)	iron	goes rusty / turns brown		1
(c)	An ex	xplanation that links the following two s	ACCEPT	2
	M1	tube is held upright	equalise the levels of water	
	M2	so that scale can be correctly read / volume recorded is accurate	so that the gas in the test tube is at atmospheric pressure	
(d) (i)	M1	for (32 - 26) or 6 seen		2
	M2	(6 ÷ 32) x 100% = 18.75 = 19%	ALLOW 18.75 or 18.8	
(ii)	An ex	xplanation that links the following two s	ACCEPT	2
	M1	volume change is small /data recorded to nearest 1cm ³	temperature may not be constant	
	M2	so a small error in making the measurement will give a very different value	therefore volume of gas may alter	
(e) (i)	M1	percentage oxygen would be lower		2
	M2	because some oxygen remains unreacted with the iron		
(ii)	M1	no change in percentage oxygen		2
	M2	because the iron wool is in excess		

Total for Question 8 = 12 marks

	Question number			Answer	Additional Guidance	Marks
9	(a)		D (00	ctane)		1
	(b)	(i)	nitro	gen		1
		(ii)	prod	uces acid rain		1
		(iii)	An ex	xplanation that links the following three		3
			M1	the fuel react/combines with oxygen		
			M2	by complete combustion to produce carbon dioxide		
			М3	and incomplete combustion to produce carbon monoxide		
	(c)		M1	Brent Crude has a higher proportion of lighter fractions	ACCEPT named fraction e.g. gasoline	3
			M2	lighter fractions are more economically useful / have higher demand		
			М3	therefore Brent Crude has a higher price than Maya crude oil		
			ACCI	EPT reverse argument for Maya crude		
	(d)			catalyst product gas nmineral wool)		4
			M1	diesel sample in test tube		
			M2	heat / Bunsen burner		
			МЗ	catalyst	ACCEPT named catalyst e.g.	
			М4	suitable method of collection e.g over water	porcelain	

Question number	Answer	Additional guidance	Marks
10 (a)	M1 in a compound, elements are chemically combined together		2
	M2 in fixed proportions	ACCEPT can only be separated by chemical reactions	
(b) (i)	B (chloride)		1
(ii)	M1 magnesium is reactive, so would react with the acid (to form hydrogen)		2
	M2 but no visible reaction / only a slow reaction when acid is added to the coin		
(c) (i)	M1 prevents spots spreading sideways (and merging together)		1
(ii)	M1 the iron salt is insoluble / has very low solubility in the solvent		1
(iii)	M1 nickel and copper		2
	M2 the Rf values of these reference samples are the same as spots in the coin solution	ACCEPT the spots have travelled the same distance	

Total for Question 10 = 9 marks